Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

11
Il
Il

Draft Ct+ Interface for the FE Sparse Linear Sol ver Abstraction

D stributed Systens Research Dept.
Sandi a National Labs
Li vernore, CA 94550

Authors: r. |. clay - snl
k.d. msh - csu chico
ivan otero - |Inl

lee taylor - snl
alan willians - snl

Dat e: First QO draft 10-feb-97 (version 0), based on procedural
draft started summer 96.

Update: 15-Cct-98, version 1.0
This interface specification is intended to provide a sinple neans for
passing finite-elenent data to and obtai ning sol uti on services from

solver libraries within an object-oriented, C++ setting.

A procedural interface specificationis also in progress, with basic
functionality mrroring this G- spec.

Updates to this specification can be downl oaded from
http://ww. ca. sandi a. gov/i si s/ fei _docs. htni

Summary of nodifications fromlast updates:

15-0ct-98 added a raft of nodifications for v1.0 -- see the
annot at ed reference docunent for these details. These
nodi fications include permtting different-sized
wor ksets between the init and | oad steps, and a |ist
of nodifications pertaining to adding "field" abstractions
to sinplify handling nultiphysics simulations. In v1.0
and future versions, all b.c.'s and constraints are dealt
with at the level of nodal field paraneters, and el ement
bl ocks register their approxinmation fields explicitly.

15-jan-98 added the "reset Systen? function, allowi ng the FE
application to reset the underlying matrix and vect or
to contain zeros.
al so added a paraneter to the | oadE enent Data function,
with which the application specifies which workset is
bei ng | oaded.

29-jul -97 added Sierra-notivated abstraction for
gl obal -1 D (extended integer) data types to permt better
integration with Sierra FE devel opnent efforts. Redefined
bl ock to include variable solution cardinality pattern as
per suggestions fromthe Aztec SNLA group.

16-may-97 augnmented data structures for external nodes to handl e
both send and receive functions. Generalized handling of
penalty constraint conditions. Added ability to nanage
groups (sets) of generic constraints. Sinplified the
i npl enent ati on of the Lagrange multiplier constraint form



Syntax-Colored Listing for fei.h Page:

Wednesday, December 16, 1998 / 9:37 AM

/I 23-apr-97 fixed order of |oad process, by placing boundary condition
/1 | oad step before elenent data | oading. This permts the
/1 i npl ementation to nodify the sparse matrix for boundary
/1 conditions at the elenent level, which is a -lot- sinpler!
/1 Note: we're leaving the "elenent-first" ordering for the
/1 initialization stage, and using the "b.c.-first" approach
/1 for the loading steps. |If this lack of agreenent in the
/1 calling sequence is a problemit would be straightforward
/1 to fix, though we're not doing that change now. ..

11l

/Il 17-apr-97 clarity inprovenents, including appropriate const

/1 declarations for all passed paraneters, and inproved

/1 or enhanced solution return functions

/1

/1 10-apr-97 mnor fixes, including sone nam ng changes to enhance

/1 consi stency, and two new sol ution upl oad functi ons:

/1 - addition of proposed new sol ution upload functions for
/1 el ement sol ution paramand Lagrange nmultiplier return
/1

/[l 31-mar-97 Major restructuring effort, involving several key ideas:
/1 - renoval of workset term nol ogy

/1 - introduction of start/end nethod calling architecture
/1 for overall block structure of data-handling (see nore
/1 det ai | ed not e bel ow)

/1 - careful definition of nodal |ists/nodal sets

/1l

[l 27-feb-97 Introduced workSet definitions for both el ement and noda
/1 data, including appropriate initializations.

11l

/1 Fl eshed out distribution of paranmeter |ists, and especially
/1 those for boundary and interface condition data.

/1l

/1 Began task of nerging annotations into the interface file,
I to docunent each passed paraneter and returned val ues.

/1

/[l 12-feb-97 Added initialization for boundary condition and interface
/1 condition constraints, so that underlying natrix/vector
/1 objects are fully configurable after intitialization

/1 sequence.

/1

I Added initConplete function to indicate that al

/1 initialization steps have been conpl eted, and that the

/1 mat ri x/ vector "objects" can be forned.

11l

/1 Made Spar seLi near Equati ons obj ect constructor require

/1 no argunents, but internally contain pointers to natrix
I and vector objects corresponding to virtual Ax=b. These
/1 internal objects may (if needed) be constructed/ configured
/1 when the initConplete function is invoked, since at that
/1 point all structural information is avail able.

11l

/1 Al functions now return int-valued error status.

/1

/1 Various function renaming to inprove consi stency.

/1

/1

11l

/1 Design overview

/1l

/' The C++ interface is based on the followi ng primary abstractions:

/1

/1 Sparse |inear systemof equations..



Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

11
11
Il

Mat ri x virtual representation of matrix object A

Vect or virtual representation of vector objects

Equations for linear case, conposed of matrix A solution
vector x, and RHS vector b for Ax=b

The end-user is required to construct an equations object, denoted
Spar seli near Equati ons (SLE), which contains internal pointers to
virtual natrix and vector objects. The equations object is the
central interface between the equation sol ver services and the

FE anal ysi s codes.

The initialization sequence provides sufficient information for
construction (if needed) of matrix and vector objects fromwthin
the SLE obj ect.

Finite el enents..

field a solution field defined over all or part of the
sol ution dormain, and interpolated over any or all
of the el enent blocks defined via the interface

bl ock a collection of elenents and associ at ed nodes
satisfying the followi ng elenental criteria:

(1) all have the sanme nunber of associated nodes

(2) all have the sane pattern of solution cardinality
(i.e., the nunber of unknowns per node forns a
consi stent pattern over the associated nodes)

(3) all elements are local to the sanme processor

el entet a subset of a block to permt grouping of elenents
within a bl ock for conveni ence in passing el ement through
the interface layer, on a nore-or-less arbitrary scale
ranging from"one elenent” up to "all the el enents on
this processor”. It is inportant to note that el enfets
inherit the following inplicit restriction

(4) all nodes are either local to this processor,
or shared by this processor

nodeSet a coll ection of individual nodes, grouped to nake
aggregate handling of data convenient. One exanple
of a nodeSet would be a list of nodes where a
generic boundary condition is specified.

const r Set a collection of generic constraints, where the
specific formof the constraint (i.e., the nunber
of nodes defining the constraint, and the wei ghts
assigned to each nodal solution paraneter) is fixed
for each different list of nodes associated with
constrai nt

In cases where the generic term"set" is used, it should be clear
fromcontext which type is assuned.

The bl ock is fundanmental to storing common paranetric data. The
elenBet is the basic working unit of this interface, where the size
of the elenBet typically reflects cache perfornance

| nportant conventions regardi ng el enBets and nodeSet s:

(a) The union over all the elenent sets of all the el enents



Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

11
11

contained in the collection of elenBets is the entire
list of elenents associated with the processor

(b) The intersection over all the elenent sets of all the
el enents contained in the collection of elenBets is NULL

Note: conventions (a) and (b) nay be rel axed sonmewhat in the
future, in order to acconodate "shadow el emrents”, which
are fictitious |local copies of elenents from nei ghboring
processors, used to sinplify or reduce communi cati ons
during the assenbly process. |If restrictions (a) and (b)
-are- relaxed to admt shadow el enents, then the union
may i nclude sone (shadow) el enents -not- associated with
this processor, and the intersection may not be null, but
i nstead contain duplicate copies of shadow el enents. In
any case, the discrepancies fromthe restrictions (a) and
(b) presented above will be confined to specific cases,
nanely sets of shadow el enents. .

(c) The union over all the nodal sets of all the nodes
contained in the collection of nodeSets is the list of
nodes that are "interesting”, nanely nodes wth either
boundary data defined, or those that are shared with
anot her processor. |If a node isn't "interesting" in these
senses, then it doesn't need to be identified as bel ongi ng
to any nodeSet, as the solver can figure out which nodes
are active by scanning the el enent connectivity data.

(d) The intersection over all the nodal sets of all the
nodes contai ned in the collection of nodeSets does not
have to be NULL, as it nay include nodal data that has sone
overl ap, such as a node shared between processors that al so
has a boundary condition associated with it.

Known probl ens/ i ssues/ questi ons:

*

Ve will eventually add a nore general formof constraint
relation (actually, "relations", as nore than one equation wll
be devel oped for each constraint, in general) for sonme of the
new slidesurface constraint forns used in ALESD. This extension
wll leave the rest of the interface functions unchanged, so it
does not detract fromthe existing interface architecture

Wiat val ues to use for errStat codes?

& W are working to expand equation sol ution services interface:

- eigen anal ysis
- multi-level /multi-grid support
- extension to nonlinear egns.

Definitions and Assunpti ons:

SPMD:

Single Program Miltiple Data - the parallel programing
par adi gm wher e each processor executes the sane set of
instructions as the others, but operates on |ocal data.
Al function calls in this interface are assuned to be
executing in parallel according to an SPMD architecture.



Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

11
11
/1

boundary node:

A node whi ch has a boundary condition associated with it
(note that this definition does -not- inply such a node is
| ocated on the boundary between processors of a donain
deconposition!).

active node:

A node whi ch appears in the el enent connectivity |ist

for a given processor. |If a node is active, then there
will be elenent data contributing to equations associ at ed
with that node. The union over all the elenments of the
nodes associ ated with each elenment is the list of active
nodes, and such nodes are instrumental to constructing
the sparse matrix's representation

al so, "active node" can be taken to be the restriction
of this definition to a particular block structure on a
gi ven processor, so that we can refer to the list of
active nodes associated with a given processor, or a
simlar (subset) list associated with a given bl ock

shar ed node:

A node which is shared anong two or nore processors,
and which is connected to an el enent on this processor.
Shared nodes will be a subset of the nodes found by
scanning all elements on the | ocal processor (i.e., the
list of all active nodes).

ext ernal node:

A node which is external to the | ocal processor, but
which is needed for |ocal conputations. External nodes
are not connected to any local elenents. That is,
external nodes will not show up by scanning all el enents
on the local processor. These are typically associated
with interface (e.g., slide line) conditions, and they
are by definition -not- active nodes.

description of basic calling architecture

hi ghest-level overview ......... ... i

(1) initialization
general data handling to determne eqn systemstructure

(2) loading of elenent and nodal data
passi ng el enent and boundary condition data so as to
construct the systemof equations

(3) equation systemsol ution
setting and applying solution strategies for sol ving
the system of equations

(4) return of solution data
query sol ver to determ ne nodal and el enental sol ution
val ues



Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

Il
11
/1

ORI -1 BVEl Vi W . o ottt

--- many steps in calling sequence use a bl ocked structure to
aidiniterating over all the collected data

(1) initialization
(a) general initialization calls
(b) elenment initialization block
(i) pass elenment set initialization data
(c) node initialization block
(i) pass nodal set data (e.g., shared nodes)
(d) constraint (interface) condition block
(i) pass constraint relation init data
(e) notification of end of initialization section

Notes on initialization nethods:

-- constraint relation data is passed using constrSets, which
are generic aggregations of individual constraint relations.
these constrSets can be readily degenerated down to
i ndi vi dual al gebraic constraint relations

-- elenent and nodal initialization data is passed using
aggregations el enSet and nodeSet, as these datatypes are
generic in that they naturally apply to groups of elenents
or nodes. These accumul ative data types al so degenerate
gracefully down to the case of "one elenent" and "one node",
in the sane manner as for constraint sets

(2) elenent and nodal data passing processes

(a) boundary condition data-passing bl ock
(i) pass boundary condition node set data

(b) el enent data-passing bl ock
(i) pass elenent set stiffnesses and | oads

(c) constraint (interface) condition data-passing bl ock
(i) pass constraint relation definitions

(d) notification of end of data-passing section

Not es on dat a- passi ng net hods:

-- sone repetition of initialization data (such as connectivity
data for elenents) nay be repeated to sinplify data caching.

(3) solution
(a) select preferred sol ution nethods
(i) advise choice of solver
(ii) advise choice of preconditioner
(b) set solution control paraneters
(i) max iterations
(ii) convergence tol erance
(iii) etc.
(c) invoke sol ution process

Not es on sol uti on net hods:

-- nmay need add ot her nethods here, such as a neans to handl e
di vergent iterations or other exception conditions.

-- have added nmethods to pass initial vector estimates to
the solvers, as the inverses of those "solution return"



Syntax-Colored Listing for fei.h

Wednesday, December 16, 1998 / 9:37 AM

11

Il
11

/1

nmet hods |isted bel ow.

(4) return of solution data

Not es on sol ution return methods:

-- we -can- provide extensibility of solution return process,
in case of specialized data-passing needs (such as sone

(a) block sol ution query
(i) return solution data for el enent sets
(ii) return constraint (Lagrange) paraneters
(b) alternate (future) nethods for solution query
(c) notification of end of solution query section

| egacy Fortran codes).

basic outline of the calling sequence (function nanes only, with
returned error status codes renoved for clarity, and with the
/1] various utility functions renoved in the interest of sinplicity)

Spar seli near Equat i ons(ar gs) ;

initialization

i nitSol veStep(args...);
initFields(args...);

begi nl ni t B enBl ock(args...);
initEl enbet(args...);

endl ni t El enBl ock();

begi nl ni t NodeSet s(args...);
i ni t Shar edNodeSet (args...);
i ni t Ext NodeSet (args...);

endl ni t NodeSet s();

begi nl ni t CREgns(args. . .)

initCRMIl t (args. ..
initCRPen(args...);
endl ni t CREgns() ;

i ni tConpl ete();

| oad data

begi nLoadNodeSet s(args. ..);
| oadBCSet (args...);
endLoadNodeSet s() ;
begi nLoadH enBl ock() ;
| oadEl enBet (args. . .)
endLoadEl enBl ock();
begi nLoadCREgns(args. . .)
| oadCRMIl t (args...);
| oadCRPen(args...);
endLoadCREgNs() ;



Syntax-Colored Listing for fei.h Page: 8
Wednesday, December 16, 1998 / 9:37 AM

/1 | oadConpl et e() ;

11l

/1

/1 (3) equation solution

I R T T T

/1

11 paraneters(args...);

/1 i terateToSol ve(args...);

11l

/1

/1 (4) return of solution data
R T T

/1

11 get Bl ockNodeSol uti on(args...);
/1 get Bl ockFi el dNodeSol ution(args...);
/1 get Bl ockE enfol ution(args...);
/1 get CRMul t Sol ution(args...);

/1 get CRMul t Paran{args...);

11l

/1

/1

/1 include the file where typedefs are for AobalID, etc

#i ncl ude "basi cTypes. h"
#i ncl ude "npi. h"

/1 public interface definition
cl ass SparselLi near Equati ons {
publi c:

/1 construction
Spar seLi near Equat i ons(MPl _Comm FEIl _COM WCRLD, int mast er Rank=0) {};
virtual ~SparselLi near Equations() {};

/1 Structural initialization sequUENCE. .. ...,

/] per-solve-step initialization
virtual int initSolveStep(int nunk enBl ocks,
int solvType) = O;

// identify all the solution fields present in the anal ysis
virtual int initFields(int nuntields,

const int *cardFi el ds,

const int *fieldlDs) = O;

/1 begin bl ocked-elenent initialization step
virtual int beginlnitH enBl ock(d obal | D el enBl ockl D,
i nt nuniNodesPer H enent,
const int *nunt enk el ds,
const int *const *el enfi el dl Ds,
int interleaveStrategy,
int nuniE enDCF,
int nuntl enBet s,
int nunkl emlotal) = O;

// initialize elenent sets that nmake up the bl ocks
virtual int initHl enSBet(int nuni ens,
const d obal I D *el eni Ds,
const dobal I D *const *el enConn) = O;



Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

/1 end bl ocked-el enent initialization
virtual int endlnitE enBl ock() = 0;

/1 begin collective node set initialization step.
virtual int beginlnitNodeSets(int nuntBharedNodeSet s,
i nt nunExt NodeSets) = 0;

/!l initialize nodal sets for shared nodes

virtual int initSharedNodeSet(const G obal | D *shar edNodel Ds,
i nt | enShar edNodel Ds,
const int *const *sharedProcl Ds,
const int *lenSharedProclDs) = O;

[/ initialize nodal sets for external (off-processor) communication
virtual int initExtNodeSet(const G obal | D *ext Nodel Ds,

i nt | enExt Nodel Ds,

const int *const *extProcl Ds,

const int *lenkExtProclDs) = O;

/1 end node set initialization
virtual int endlnitNodeSets() = 0;

/1 begin interface condition set initialization step
virtual int beginlnitCREqns(int numCRWI t Set s,
int nunCRPenSets) = 0;

/1 interface condition initialization
/Il - lagrange multiplier formulation
virtual int initCRWIt(const dobal D *const *CRNodeTabl e,
const int *CRFieldList,
int nunvul t CRs,
i nt | enCRN\odeli st
int& CRMIltID) = O;

/] interface condition initialization
/1 - penalty function formulation
virtual int initCRPen(const d obal ID *const *CRNodeTabl e,
const int *CORF el dLi st,
i nt nunPenCRs,
int | enCRN\odelLi st
int& CRPenl D) = 0;

/1l end interface condition list initialization
virtual int endlnitCREgns() = O;

// indicate that overall initialization sequence is conplete
virtual int initConplete() = 0;

[l FE data load sequencCe. ............ i

[/l set a value (usually zeros) througout the |inear system
virtual int resetSysten{double s=0.0) = 0;

/1l begin node-set data | oad step
virtual int begi nLoadNodeSet s(i nt nunBCNodeSets) = O;

/1 boundary condition data | oad step
virtual int |oadBCSet(const Q@ obal | D *BCN\odeSet,
i nt | enBCONodeSet ,
int BCH eldl D
const doubl e *const *al phaBCDat aTabl e,
const doubl e *const *bet aBChat aTabl e,



Syntax-Colored Listing for fei.h Page:
Wednesday, December 16, 1998 / 9:37 AM

const doubl e *const *ganmmaBCDat aTabl e)

/'l end node-set data | oad step
virtual int endLoadNodeSets()

/1 begin bl ocked-el enent data | oadi ng step

virtual int begi nLoadE enBl ock(Q obal I D el enBl ockl D,
int nunkl entet s,
int nunkl enTotal) = O;

/1 el enbet-based stiffness/rhs data | oadi ng step
virtual int |oadHE enBet(int el entetlD,
i nt nunt ens,
const dobal I D *el em Ds,
const dobal I D *const *el enConn,
const doubl e *const *const *el enBtiffness,
const doubl e *const *el enLoad,
int elenfFormat) = O;

/1 end bl ocked-el enent data | oadi ng step
virtual int endLoadE enBl ock() =

/] begin interface-condition data | oad step
virtual int begi nLoadCREgns(int numCRWI t Set s,
i nt nunmCRPenSet s)

[/ lagrange-multiplier interface condition |oad step
virtual int loadCRWIt(int CRMIltID,
int numMil t CRs,
const dobal I D *const *CRNodeTabl e,
const int *CRF el dLi st,
const doubl e *const *CRWMi ght Tabl e,
const doubl e *CRVal ueli st,
int | enCRNodeList) = 0;

[/ penalty formulation interface condition | oad step
virtual int | oadCRPen(int CRPenl D,
i nt nunPenCRs,
const d obal I D *const *CRNodeTabl e,
const int *CRFi el dLi st,
const doubl e *const *CRWMi ght Tabl e,
const doubl e *CRval ueli st ,
const doubl e *penVal ues,
int | enCRNodeList) = 0O;

/1 end interface-condition data | oad step
virtual int endLoadCREgns() = O;

/1 indicate that overall data | oading sequence is conplete
virtual int |oadConplete() = 0;
[/ Equation solUution SEerviCeS. ........ouuiiiiuii..
[l set paraneters associated with sol ver choice, etc.
virtual void paraneters(int nunfararns,
char **paranttrings) = 0;
[/ start iterative solution

virtual int iterateToSol ve()

[1] SOl UtiON FetUrN SEIVi CeS. . v vt it e e e



Syntax-Colored Listing for fei.h Page:

Wednesday, December 16, 1998 / 9:37 AM

[l return all nodal solution parans on a bl ock-by-bl ock basis
virtual int getBl ockNodeSol uti on(Q obal I D el enBl ockl D,

A obal | D *nodel DLi st ,

int & enNodel DLi st ,

int *of fset,

doubl e *results) = 0;

/'l return nodal solution for one field on a bl ock-by-bl ock basis
virtual int getBl ockFi el dNodeSol uti on(d obal I D el enBl ockl D,

int fieldl D,

d obal I D *nodel DLi st ,

i nt & | enNodel DLi st ,

int *of fset,

doubl e *results) = 0;

/1 return elenent solution parans on a bl ock-by-bl ock basis
virtual int getBl ockE entol uti on(Q obal I D el enBl ockl D,

Ad obal I D *el em DLi st ,

int& | enH em DLi st,

int *of fset,

doubl e *resul ts,

i nt & nuntEl enDCF) = O;

/'l return Lagrange solution to FE anal ysis on a constraint-set basis
virtual int getCRWultParanm(int CRVItID,

int numMil t CRs,

doubl e *mul t Val ues) = 0;

/] return Lagrange solution to FE anal ysis on a whol e- processor basis
virtual int get CRMil t Sol ution(int& nunCRMul t Set s,

int *CRMIl t 1 Ds,

int *of fset,

doubl e *results) = 0;

associ ated "puts" paralleling the solution return services.

the int sizing parameters are passed for error-checking purposes, so
that the interface inplementation can tell if the passed estinmate
vectors nake sense -before- an attenpt is nmade to utilize themas
initial guesses by unpacking theminto the solver's native solution
vector format (these paraneters include | enNodel DLi st, |enHE enm DLi st,
nunel enDCOF, and nunMiIl tCRs -- all other passed parans are either
vectors or bl ock/constraint-set |Ds)

/1 put nodal -based sol uti on guess on a bl ock-by-bl ock basis
virtual int putBl ockNodeSol uti on(d obal I D el enBl ockl D,

const d obal I D *nodel DLi st ,

i nt | enNodel DLi st ,

const int *offset,

const double *estimates) = O;

/1 put nodal -based guess for one field on a bl ock-by-bl ock basis
virtual int putBl ockFi el dNodeSol uti on(Q obal I D el enBl ockl D,

int fieldl D

const d obal | D *nodel DLi st,

i nt | enNodel CLi st

const int *offset,

const double *estimates) = O;

/1 put el enent-based sol uti on guess on a bl ock-by-bl ock basi s
virtual int putBl ockH ensol uti on(Qd obal I D el enBl ockl D,

11



Syntax-Colored Listing for fei.h Page:

Wednesday, December 16, 1998 / 9:37 AM

const d obal I D *el enl DLi st ,
int | enB en DLi st,

const int *offset,

const doubl e *esti mat es,
int nunll enDOF) = O;

/1 put Lagrange solution to FE anal ysis on a constraint-set basis
virtual int putCRWultParan(int CRwWItID,

int numMil t CRs,

const double *rmultEstimates) = O;

[/ utility functions that aid in integrating the FEl calls..............

/] support nethods for the "gets" and "puts" of the soln services.

Il return info associated with Lagrange nultiplier solution
virtual int getCRMultS zes(int& numCRWII t 1 Ds,
int& lenResults) = 0;

/1l return info associated w th bl ocked nodal sol ution
virtual int getBl ockNodel DLi st (d obal | D el enBl ockl D,
A obal | D *nodel DLi st ,
int& | enNodel DLi st) = 0O;

/1 return info associated w th bl ocked el enent sol ution
virtual int getBl ockE em DLi st (Qd obal I D el enBl ockl D,
Q obal I D *el em DLi st ,
int& lenBH emDList) = 0;

/1 mscellaneous self-explanatory "read-only" utility functions............

virtual int getNunSol nParans(Qd obal | D gl obal Nodel D) const = 0;

/1l  return the nunber of stored el enent bl ocks
virtual int getNunlEl enBl ocks() const = 0;

/1 return the nunber of active nodes in a given el enent bl ock
virtual int get NunBl ockAct Nodes(Q obal I D bl ockl D) const = 0;

/1 return the nunber of active equations in a given el enent bl ock
virtual int get NunBl ockAct Eqns(d obal | D bl ockl D) const = O;

/1l return the nunber of nodes associated with elenments of a
/1 given block ID
virtual int get NunNodesPer B enent (Q obal I D bl ockl D) const = 0;

[l return the nunber of equations (including el enent eqgns)
[/ associated with elenents of a given block |ID
virtual int get NunEgnsPer B enent (Q obal | D bl ockl D) const = 0;

/1l return the nunber of elenents associated with this bl ockl D
virtual int get NunBl ockE enent s(Qd obal I D bl ockl D) const = 0;

[/ return the nunber of elenents egns for elens w this bl ocklD
virtual int get NunBl ockE enEqns(Q obal I D bl ockl D) const = 0;

12



